Celistvý prvek
Vzhled
Celistvý prvek je pojem z oboru komutativní algebry. Je-li dán komutativní okruh a jeho podokruh , pak je prvek celistvý nad , je-li kořenem nějakého monického polynomu s koeficienty z , tedy pokud existují a taková, že . Definice celistvého prvku se liší od definice algebraického prvku pouze v přidaném požadavku, aby byl polynom monický, z čehož plyne, že každý celistvý prvek je algebraický.
Množina prvků , které jsou celistvé nad , se nazývá celistvý uzávěr v .
Příklady
[editovat | editovat zdroj]- Celistvé prvky nad celými čísly v racionálních číslech jsou právě všechna celá čísla.
- Pro okruh je nad celými čísly celistvým uzávěrem okruh
Reference
[editovat | editovat zdroj]V tomto článku byl použit překlad textu z článku Ganzheit (kommutative Algebra) na německé Wikipedii.