Přeskočit na obsah

Morleyova věta o kategoričnosti

Z Wikipedie, otevřené encyklopedie

Morleyova věta o kategoričnosti je jednou z nejdůležitějších vět teorie modelů. Dokázal ji roku 1962 americký matematik Michael Darwin Morley ve své disertační práci s názvem „Categoricity in Power“. Tuto větu později zobecnil Saharon Shelah.

Znění věty

[editovat | editovat zdroj]

Kategorická teorie

[editovat | editovat zdroj]

Řekneme, že teorie T je kategorická v kardinalitě (-kategorická), jsou-li každé dva modely T mohutnosti izomorfní.

Morleyova věta pro spočetný jazyk

[editovat | editovat zdroj]

Původní znění Morleyovy věty z roku 1962 je následující:

Nechť T je teorie v jazyce spočetné kardinality a nechť T je kategorická v nějaké nespočetné kardinalitě. Pak je T kategorická v každé nespočetné kardinalitě.

Shelahovo zobecnění pro libovolný jazyk

[editovat | editovat zdroj]

Saharon Shelah zobecnil původní Morleyovu větu i na teorie s nespočetným jazykem:

Nechť T je teorie v jazyce kardinality a nechť T je kategorická v nějaké kardinalitě . Pak T je kategorická v každé kardinalitě .

Příklady

[editovat | editovat zdroj]
  • Teorie algebraicky uzavřených těles dané charakteristiky p (p=0 nebo prvočíslo) je kategorická v kardinalitě (viz funkce alef), tedy je podle Morleyovy věty kategorická v každé nespočetné kardinalitě, -kategorická však není.
  • Teorie čisté rovnosti je kategorická ve všech (včetně konečných) kardinalitách.
  • Teorie hustého lineárního uspořádání bez konců je -kategorická, ale není kategorická v žádné nespočetné kardinalitě.
  • Stejně tak teorie v jazyce obsahujícím jediný unární predikátový symbol E s axiomy „existuje nekonečně mnoho x takových, že E(x)“, „existuje nekonečně mnoho x takových, že “ je -kategorická, ale není kategorická v žádné nespočetné kardinalitě.

Vlastnosti kategorických teorií

[editovat | editovat zdroj]

Související články

[editovat | editovat zdroj]