Wikipedista:Miroslav Běhal/Pískoviště
atomové číslo | značka | název | název česky |
---|---|---|---|
1 | H | Hydrogen | vodík |
2 | He | Helium | helium |
3 | Li | Lithium | litium |
4 | Be | Beryllium | berylium |
5 | B | Beryllium | bór |
6 | C | Carbon | uhlík |
7 | N | Nitrogen | dusík |
1
7 | Nitrogen | N | 15 | 2 | p | Gas | Primordial | Diatomic nonmetal |- | 8 | Oxygen | O | 16 | 2 | p | Gas | Primordial | Diatomic nonmetal |- | 9 | Fluorine | F | 17 | 2 | p | Gas | Primordial | Diatomic nonmetal |- | 10 | Neon | Ne | 18 | 2 | p | Gas | Primordial | Noble gas |- | 11 | Sodium | Na | 1 | 3 | s | Solid | Primordial | Alkali metal |- | 12 | Magnesium | Mg | 2 | 3 | s | Solid | Primordial | Alkaline earth metal |- | 13 | Aluminium | Al | 13 | 3 | p | Solid | Primordial | Post-transition metal |- | 14 | Silicon | Si | 14 | 3 | p | Solid | Primordial | Metalloid |- | 15 | Phosphorus | P | 15 | 3 | p | Solid | Primordial | Polyatomic nonmetal |- | 16 | Sulfur | S | 16 | 3 | p | Solid | Primordial | Polyatomic nonmetal |- | 17 | Chlorine | Cl | 17 | 3 | p | Gas | Primordial | Diatomic nonmetal |- | 18 | Argon | Ar | 18 | 3 | p | Gas | Primordial | Noble gas |- | 19 | Potassium | K | 1 | 4 | s | Solid | Primordial | Alkali metal |- | 20 | Calcium | Ca | 2 | 4 | s | Solid | Primordial | Alkaline earth metal |- | 21 | Scandium | Sc | 3 | 4 | d | Solid | Primordial | Transition metal |- | 22 | Titanium | Ti | 4 | 4 | d | Solid | Primordial | Transition metal |- | 23 | Vanadium | V | 5 | 4 | d | Solid | Primordial | Transition metal |- | 24 | Chromium | Cr | 6 | 4 | d | Solid | Primordial | Transition metal |- | 25 | Manganese | Mn | 7 | 4 | d | Solid | Primordial | Transition metal |- | 26 | Iron | Fe | 8 | 4 | d | Solid | Primordial | Transition metal |- | 27 | Cobalt | Co | 9 | 4 | d | Solid | Primordial | Transition metal |- | 28 | Nickel | Ni | 10 | 4 | d | Solid | Primordial | Transition metal |- | 29 | Copper | Cu | 11 | 4 | d | Solid | Primordial | Transition metal |- | 30 | Zinc | Zn | 12 | 4 | d | Solid | Primordial | Transition metal |- | 31 | Gallium | Ga | 13 | 4 | p | Solid | Primordial | Post-transition metal |- | 32 | Germanium | Ge | 14 | 4 | p | Solid | Primordial | Metalloid |- | 33 | Arsenic | As | 15 | 4 | p | Solid | Primordial | Metalloid |- | 34 | Selenium | Se | 16 | 4 | p | Solid | Primordial | Polyatomic nonmetal |- | 35 | Bromine | Br | 17 | 4 | p | Liquid | Primordial | Diatomic nonmetal |- | 36 | Krypton | Kr | 18 | 4 | p | Gas | Primordial | Noble gas |- | 37 | Rubidium | Rb | 1 | 5 | s | Solid | Primordial | Alkali metal |- | 38 | Strontium | Sr | 2 | 5 | s | Solid | Primordial | Alkaline earth metal |- | 39 | Yttrium | Y | 3 | 5 | d | Solid | Primordial | Transition metal |- | 40 | Zirconium | Zr | 4 | 5 | d | Solid | Primordial | Transition metal |- | 41 | Niobium | Nb | 5 | 5 | d | Solid | Primordial | Transition metal |- | 42 | Molybdenum | Mo | 6 | 5 | d | Solid | Primordial | Transition metal |- | 43 | Technetium | Tc | 7 | 5 | d | Solid | Transient | Transition metal |- | 44 | Ruthenium | Ru | 8 | 5 | d | Solid | Primordial | Transition metal |- | 45 | Rhodium | Rh | 9 | 5 | d | Solid | Primordial | Transition metal |- | 46 | Palladium | Pd | 10 | 5 | d | Solid | Primordial | Transition metal |- | 47 | Silver | Ag | 11 | 5 | d | Solid | Primordial | Transition metal |- | 48 | Cadmium | Cd | 12 | 5 | d | Solid | Primordial | Transition metal |- | 49 | Indium | In | 13 | 5 | p | Solid | Primordial | Post-transition metal |- | 50 | Tin | Sn | 14 | 5 | p | Solid | Primordial | Post-transition metal |- | 51 | Antimony | Sb | 15 | 5 | p | Solid | Primordial | Metalloid |- | 52 | Tellurium | Te | 16 | 5 | p | Solid | Primordial | Metalloid |- | 53 | Iodine | I | 17 | 5 | p | Solid | Primordial | Diatomic nonmetal |- | 54 | Xenon | Xe | 18 | 5 | p | Gas | Primordial | Noble gas |- | 55 | Caesium | Cs | 1 | 6 | s | Solid | Primordial | Alkali metal |- | 56 | Barium | Ba | 2 | 6 | s | Solid | Primordial | Alkaline earth metal |- | 57 | Lanthanum | La | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 58 | Cerium | Ce | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 59 | Praseodymium | Pr | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 60 | Neodymium | Nd | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 61 | Promethium | Pm | 3 | 6 | f | Solid | Transient | Lanthanide |- | 62 | Samarium | Sm | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 63 | Europium | Eu | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 64 | Gadolinium | Gd | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 65 | Terbium | Tb | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 66 | Dysprosium | Dy | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 67 | Holmium | Ho | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 68 | Erbium | Er | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 69 | Thulium | Tm | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 70 | Ytterbium | Yb | 3 | 6 | f | Solid | Primordial | Lanthanide |- | 71 | Lutetium | Lu | 3 | 6 | d | Solid | Primordial | Lanthanide |- | 72 | Hafnium | Hf | 4 | 6 | d | Solid | Primordial | Transition metal |- | 73 | Tantalum | Ta | 5 | 6 | d | Solid | Primordial | Transition metal |- | 74 | Tungsten | W | 6 | 6 | d | Solid | Primordial | Transition metal |- | 75 | Rhenium | Re | 7 | 6 | d | Solid | Primordial | Transition metal |- | 76 | Osmium | Os | 8 | 6 | d | Solid | Primordial | Transition metal |- | 77 | Iridium | Ir | 9 | 6 | d | Solid | Primordial | Transition metal |- | 78 | Platinum | Pt | 10 | 6 | d | Solid | Primordial | Transition metal |- | 79 | Gold | Au | 11 | 6 | d | Solid | Primordial | Transition metal |- | 80 | Mercury | Hg | 12 | 6 | d | Liquid | Primordial | Transition metal |- | 81 | Thallium | Tl | 13 | 6 | p | Solid | Primordial | Post-transition metal |- | 82 | Lead | Pb | 14 | 6 | p | Solid | Primordial | Post-transition metal |- | 83 | Bismuth | Bi | 15 | 6 | p | Solid | Primordial | Post-transition metal |- | 84 | Polonium | Po | 16 | 6 | p | Solid | Transient | Post-transition metal |- | 85 | Astatine | At | 17 | 6 | p | Solid | Transient | Metalloid |- | 86 | Radon | Rn | 18 | 6 | p | Gas | Transient | Noble gas |- | 87 | Francium | Fr | 1 | 7 | s | Solid | Transient | Alkali metal |- | 88 | Radium | Ra | 2 | 7 | s | Solid | Transient | Alkaline earth metal |- | 89 | Actinium | Ac | 3 | 7 | f | Solid | Transient | Actinide |- | 90 | Thorium | Th | 3 | 7 | f | Solid | Primordial | Actinide |- | 91 | Protactinium | Pa | 3 | 7 | f | Solid | Transient | Actinide |- | 92 | Uranium | U | 3 | 7 | f | Solid | Primordial | Actinide |- | 93 | Neptunium | Np | 3 | 7 | f | Solid | Transient | Actinide |- | 94 | Plutonium | Pu | 3 | 7 | f | Solid | Primordial | Actinide |- | 95 | Americium | Am | 3 | 7 | f | Solid | Synthetic | Actinide |- | 96 | Curium | Cm | 3 | 7 | f | Solid | Synthetic | Actinide |- | 97 | Berkelium | Bk | 3 | 7 | f | Solid | Synthetic | Actinide |- | 98 | Californium | Cf | 3 | 7 | f | Solid | Synthetic | Actinide |- | 99 | Einsteinium | Es | 3 | 7 | f | Solid | Synthetic | Actinide |- | 100 | Fermium | Fm | 3 | 7 | f | | Synthetic | Actinide |- | 101 | Mendelevium | Md | 3 | 7 | f | | Synthetic | Actinide |- | 102 | Nobelium | No | 3 | 7 | f | | Synthetic | Actinide |- | 103 | Lawrencium | Lr | 3 | 7 | d | | Synthetic | Actinide |- | 104 | Rutherfordium | Rf | 4 | 7 | d | | Synthetic | Transition metal |- | 105 | Dubnium | Db | 5 | 7 | d | | Synthetic | Transition metal |- | 106 | Seaborgium | Sg | 6 | 7 | d | | Synthetic | Transition metal |- | 107 | Bohrium | Bh | 7 | 7 | d | | Synthetic | Transition metal |- | 108 | Hassium | Hs | 8 | 7 | d | | Synthetic | Transition metal |- | 109 | Meitnerium | Mt | 9 | 7 | d | | Synthetic | |- | 110 | Darmstadtium | Ds | 10 | 7 | d | | Synthetic | |- | 111 | Roentgenium | Rg | 11 | 7 | d | | Synthetic | |- | 112 | Copernicium | Cn | 12 | 7 | d | | Synthetic | Transition metal |- | 113 | (Ununtrium) | (Uut) | 13 | 7 | p | | Synthetic | |- | 114 | Flerovium | Fl | 14 | 7 | p | | Synthetic | Post-transition metal |- | 115 | (Ununpentium) | (Uup) | 15 | 7 | p | | Synthetic | |- | 116 | Livermorium | Lv | 16 | 7 | p | | Synthetic | |- | 117 | (Ununseptium) | (Uus) | 17 | 7 | p | | Synthetic | |- | 118 | (Ununoctium) | (Uuo) | 18 | 7 | p | | Synthetic |
- {| class="wikitable" !Z !značka !název česky !název latinsky !nejstarší použití !objevitelé !místo !komentář |- |29 |Cu |měď | |9000 let př.n.l ||Anatolie | |- | | | | | | | | |- | | | | | | | | |}
Unrecorded discoveries
[editovat | editovat zdroj]Z | Element | |||||
---|---|---|---|---|---|---|
Oldest
existing sample |
Discoverers | |||||
Notes | ||||||
Copper | 9000 BCE | |||||
Middle East | Anatolia | |||||
Lead | 7000 BCE | 3800 BCE | Africa | Abydos, Egypt | It is believed that lead smelting began at least 9,000 years ago, and the oldest known artifact of lead is a statuette found at the temple of Osiris on the site of Abydos dated circa 3800 BCE.[3] | |
79 | Gold | Before 6000 BCE | ca. 4400 BCE | Bulgaria | Varna Necropolis | The oldest golden treasure in the world, dating from 4,600 BC to 4,200 BC, was discovered at the burial site Varna Necropolis. |
47 | Silver | Before 5000 BCE | ca. 4000 BCE | Asia Minor | Estimated to have been discovered shortly after copper and gold.[4][5] | |
26 | Iron | Before 5000 BCE | 4000 BCE | Unknown; see History of ferrous metallurgy | Egypt | There is evidence that iron was known from before 5000 BCE.[6] The oldest known iron objects used by humans are some beads of meteoric iron, made in Egypt in about 4000 BCE. The discovery of smelting around 3000 BCE led to the start of the iron age around 1200 BCE[7] and the prominent use of iron for tools and weapons.[8] |
6 | Carbon | 3750 BCE | Egyptians and Sumerians | The earliest known use of charcoal was for the reduction of copper, zinc, and tin ores in the manufacture of bronze, by the Egyptians and Sumerians.[9] Diamonds were probably known as early as 2500 BCE.[10] The first true chemical analyses were made in the 18th century,[11] and in 1789 carbon was listed by Antoine Lavoisier as an element.[12] | ||
50 | Tin | 3500 BCE | 2000 BCE | Unknown; see Tin#History | First smelted in combination with copper around 3500 BCE to produce bronze.[13] The oldest artifacts date from around 2000 BCE.[14] | |
16 | Sulfur | Before 2000 BCE | Chinese/Indians | First used at least 4,000 years ago.[15] Recognized as an element by Antoine Lavoisier in 1777. | ||
80 | Mercury | Before 2000 BCE | 1500 BCE | Chinese/Indians | Egypt | Known to ancient Chinese and Indians before 2000 BCE, and found in Egyptian tombs dating from 1500 BCE.[16] |
30 | Zinc | Before 1000 BCE | 1000 BCE | Indian metallurgists | Indian subcontinent | Extracted as a metal since antiquity (before 1000 BCE) by Indian metallurgists, but the true nature of this metal was not understood in ancient times. Identified as a unique metal by the metallurgist Rasaratna Samuccaya in 800[17] and by the alchemist Paracelsus in 1526.[18] Isolated by Andreas_Sigismund_Marggraf in 1746.[19] |
33 | Arsenic | 2500 BCE/1250 CE | Bronze age | A. Magnus | In use in the early bronze age; Albertus Magnus was the first European to isolate the element in 1250.[20] In 1649, Johann_Schröder published two ways of preparing elemental arsenic.[20] | |
Antimony | 3000 BCE | In widespread use in Egypt and the Middle East.[21] |
Recorded discoveries
[editovat | editovat zdroj]Z | Element | Observed or predicted | Isolated (widely known) | Observer | First isolator | Notes |
---|---|---|---|---|---|---|
15 | Phosphorus | 1669 | 1669 | H. Brand | H. Brand | Prepared from urine, it was the first element to be chemically discovered.[22] |
27 | Cobalt | 1732 | G. Brandt | Proved that the blue color of glass is due to a new kind of metal and not bismuth as thought previously.[23] | ||
78 | Platinum | 1735 | 1735 | A. de Ulloa | A. de Ulloa | First description of a metal found in South American gold was in 1557 by Julius Caesar Scaliger. Ulloa published his findings in 1748, but Sir Charles Wood also investigated the metal in 1741. First reference to it as a new metal was made by William Brownrigg in 1750.[24] |
28 | Nickel | 1751 | 1751 | F. Cronstedt | F. Cronstedt | Found by attempting to extract copper from the mineral known as fake copper (now known as niccolite).[25] |
83 | Bismuth | 1753 | C.F. Geoffroy | Definitively identified by Claude François Geoffroy in 1753.[26] | ||
12 | Magnesium | 1755 | 1808 | J. Black | H. Davy | Black observed that magnesia alba (MgO) was not quicklime (CaO). Davy isolated the metal electrochemically from magnesia.[27] |
1 | Hydrogen | 1766 | 1500 | H. Cavendish | Paracelsus | Cavendish was the first to distinguish Šablona:Chem from other gases, although Paracelsus around 1500, Robert Boyle, and Joseph Priestley had observed its production by reacting strong acids with metals. Lavoisier named it in 1793.[28][29] |
8 | Oxygen | 1771 | 1771 | W. Scheele | W. Scheele | Obtained it by heating mercuric oxide and nitrates in 1771, but did not publish his findings until 1777. Joseph Priestley also prepared this new air by 1774, but only Lavoisier recognized it as a true element; he named it in 1777.[30][31] |
7 | Nitrogen | 1772 | 1772 | D. Rutherford | D. Rutherford | He discovered Nitrogen while he was studying at the University of Edinburgh.[32] He showed that the air in which animals had breathed, even after removal of the exhaled carbon dioxide, was no longer able to burn a candle. Carl Wilhelm Scheele, Henry Cavendish, and Joseph Priestley also studied the element at about the same time, and Lavoisier named it in 1775-6.[33] |
17 | Chlorine | 1774 | 1774 | W. Scheele | W. Scheele | Obtained it from hydrochloric acid, but thought it was an oxide. Only in 1808 did Humphry Davy recognize it as an element.[34] |
25 | Manganese | 1774 | 1774 | W. Scheele | G. Gahn | Distinguished pyrolusite as the calx of a new metal. Ignatius Gottfred Kaim also discovered the new metal in 1770, as did Scheele in 1774. It was isolated by reduction of manganese dioxide with carbon.[35] |
56 | Barium | 1772 | 1808 | W. Scheele | H. Davy | Scheele distinguished a new earth (BaO) in pyrolusite and Davy isolated the metal by electrolysis.[36] |
42 | Molybdenum | 1778 | 1781 | W. Scheele | J. Hjelm | Scheele recognised the metal as a constituent of molybdena.[37] |
52 | Tellurium | 1782 | F.-J.M. von Reichenstein | H. Klaproth | Muller observed it as an impurity in gold ores from Transylvania.[38] | |
74 | Tungsten | 1781 | 1783 | T. Bergman | J. and F. Elhuyar | Bergman obtained from scheelite an oxide of a new element. The Elhuyars obtained tungstic acid from wolframite and reduced it with charcoal.[39] |
38 | Strontium | 1787 | 1808 | W. Cruikshank | H. Davy | Cruikshank and Adair Crawford in 1790 concluded that strontianite contained a new earth. It was eventually isolated electrochemically in 1808 by Humphry Davy.[40] |
1789 | A. Lavoisier | The first modern list of chemical elements – containing, among others, 29 elements of those known then.[41] He also redefined the term "element". Until then, no metals except mercury were considered elements. | ||||
40 | Zirconium | 1789 | 1824 | H. Klaproth | J. Berzelius | Klaproth identified a new element in zirconia.[42][43] |
92 | Uranium | 1789 | 1841 | H. Klaproth | E.-M. Péligot | Klaproth mistakenly identified a uranium oxide obtained from pitchblende as the element itself and named it after the recently discovered planet Uranus.[44][45] |
22 | Titanium | 1791 | 1825 | W. Gregor | J. Berzelius | Gregor found an oxide of a new metal in ilmenite; Martin Heinrich Klaproth independently discovered the element in rutile in 1795 and named it. The pure metallic form was only obtained in 1910 by Matthew A. Hunter.[46][47] |
39 | Yttrium | 1794 | 1840 | J. Gadolin | G. Mosander | Discovered in gadolinite, but Mosander showed later that its ore, yttria, contained more elements.[48][49] |
24 | Chromium | 1797 | 1798 | N. Vauquelin | N. Vauquelin | Vauquelin discovered the trioxide in crocoite ore, and later isolated the metal by heating the oxide in a charcoal oven.[50] |
4 | Beryllium | 1798 | 1828 | N. Vauquelin | F. Wöhler and A. Bussy | Vauquelin discovered the oxide in beryl and emerald, and Klaproth suggested the present name around 1808.[51] |
23 | Vanadium | 1801 | 1830 | M. del Río | N.G.Sefström | Río found the metal in vanadinite but retracted the claim after Hippolyte Victor Collet-Descotils disputed it. Sefström isolated and named it, and later it was shown that Río had been right in the first place.[52] |
41 | Niobium | 1801 | 1864 | C. Hatchett | W. Blomstrand | Hatchett found the element in columbite ore and named it columbium. Heinrich Rose proved in 1844 that the element is distinct from tantalum, and renamed it niobium which was officially accepted in 1949.[53] |
73 | Tantalum | 1802 | G. Ekeberg | Ekeberg found another element in minerals similar to columbite and in 1844, Heinrich Rose proved that it was distinct from niobium.[54] | ||
46 | Palladium | 1803 | 1803 | H. Wollaston | H. Wollaston | Wollaston discovered it in samples of platinum from South America, but did not publish his results immediately. He had intended to name it after the newly discovered asteroid, Ceres, but by the time he published his results in 1804, cerium had taken that name. Wollaston named it after the more recently discovered asteroid Pallas.[55] |
58 | Cerium | 1803 | 1839 | H. Klaproth, J. Berzelius, and W. Hisinger | G. Mosander | Berzelius and Hisinger discovered the element in ceria and named it after the newly discovered asteroid (then considered a planet), Ceres. Klaproth discovered it simultaneously and independently in some tantalum samples. Mosander proved later that the samples of all three researchers had at least another element in them, lanthanum.[56] |
76 | Osmium | 1803 | 1803 | S. Tennant | S. Tennant | Tennant had been working on samples of South American platinum in parallel with Wollaston and discovered two new elements, which he named osmium and iridium.[57] |
77 | Iridium | 1803 | 1803 | S. Tennant | S. Tennant | Tennant had been working on samples of South American platinum in parallel with Wollaston and discovered two new elements, which he named osmium and iridium, and published the iridium results in 1804.[58] |
45 | Rhodium | 1804 | 1804 | H. Wollaston | H. Wollaston | Wollaston discovered and isolated it from crude platinum samples from South America.[59] |
19 | Potassium | 1807 | 1807 | H. Davy | H. Davy | Davy discovered it by using electrolysis on potash.[60] |
11 | Sodium | 1807 | 1807 | H. Davy | H. Davy | Davy discovered it a few days after potassium, by using electrolysis on sodium hydroxide.[61] |
20 | Calcium | 1808 | 1808 | H. Davy | H. Davy | Davy discovered the metal by electrolysis of quicklime.[61] |
5 | Boron | 1808 | 1808 | L. Gay-Lussac and L.J. Thénard | H. Davy | On June 21, 1808, Lussac and Thénard announced a new element in sedative salt, Davy announced the isolation of a new substance from boracic acid soon afterwards.[62] |
9 | Fluorine | 1810 | 1886 | A.-M. Ampère | H. Moissan | André-Marie Ampère predicted an element analogous to chlorine obtainable from hydrofluoric acid, and between 1812 and 1886 many researchers tried to obtain this element. It was eventually isolated by Moissan.[63] |
53 | Iodine | 1811 | 1811 | B. Courtois | B. Courtois | Courtois discovered it in the ashes of seaweed.[64] |
3 | Lithium | 1817 | 1821 | A. Arfwedson | W. T. Brande | Arfwedson discovered the alkali in petalite.[65] |
48 | Cadmium | 1817 | 1817 | S. L Hermann, F. Stromeyer, and J.C.H. Roloff | S. L Hermann, F. Stromeyer, and J.C.H. Roloff | All three found an unknown metal in a sample of zinc oxide from Silesia, but the name that Stromeyer gave became the accepted one.[66] |
34 | Selenium | 1817 | 1817 | J. Berzelius and G. Gahn | J. Berzelius and G. Gahn | While working with lead they discovered a substance that they thought was tellurium, but realized after more investigation that it is different.[67] |
14 | Silicon | 1824 | 1824 | J. Berzelius | J. Berzelius | Humphry Davy thought in 1800 that silica was an element, not a compound, and in 1808 suggested the present name. In 1811 Louis-Joseph Gay-Lussac and Louis-Jacques Thénard probably prepared impure silicon, but Berzelius is credited with the discovery for obtaining the pure element in 1824.[68] |
13 | Aluminium | 1825 | 1825 | H.C.Ørsted | H.C.Ørsted | Antoine Lavoisier predicted in 1787 that alumine is the oxide of an undiscovered element, and in 1808 Humphry Davy tried to decompose it. Although he failed, he suggested the present name. Hans Christian Ørsted was the first to isolate metallic aluminium in 1825.[69] |
35 | Bromine | 1825 | 1825 | J. Balard and L. Gmelin | J. Balard and L. Gmelin | They both discovered the element in the autumn of 1825 and published the results the next year.[70] |
90 | Thorium | 1829 | 1914 | J. Berzelius | D. Lely, Jr. and L. Hamburger | Berzelius obtained the oxide of a new earth in thorite.[71] |
57 | Lanthanum | 1838 | 1842 | G. Mosander | G. Mosander | Mosander found a new element in samples of ceria and published his results in 1842, but later he showed that this lanthana contained four more elements.[72] |
68 | Erbium | 1842 | 1879 | G. Mosander | T. Cleve | Mosander managed to split the old yttria into yttria proper and erbia, and later terbia too.[73] |
65 | Terbium | 1842 | 1886 | G. Mosander | J.C.G. de Marignac | In 1842 Mosander split yttria into two more earths, erbia and terbia[74] |
44 | Ruthenium | 1844 | 1844 | K. Claus | K. Claus | Gottfried Wilhelm Osann thought that he found three new metals in Russian platinum samples, and in 1844 Karl Karlovich Klaus confirmed that there was a new element.[75] |
55 | Caesium | 1860 | 1882 | R. Bunsen and R. Kirchhoff | C. Setterberg | Bunsen and Kirchhoff were the first to suggest finding new elements by spectrum analysis. They discovered caesium by its two blue emission lines in a sample of Dürkheim mineral water.[76] The pure metal was eventually isolated in 1882 by Setterberg.[77] |
37 | Rubidium | 1861 | R. Bunsen and G. R. Kirchhoff | R. Bunsen | Bunsen and Kirchhoff discovered it just a few months after caesium, by observing new spectral lines in the mineral lepidolite. Bunsen never obtained a pure sample of the metal, which was later obtained by Hervesy.[78] | |
81 | Thallium | 1861 | 1862 | W. Crookes | C.-A. Lamy | Shortly after the discovery of rubidium, Crookes found a new green line in a selenium sample; later that year, Lamy found the element to be metallic.[79] |
49 | Indium | 1863 | 1867 | F. Reich and T. Richter | T. Richter | Reich and Richter First identified it in sphalerite by its bright indigo-blue spectroscopic emission line. Richter isolated the metal several years later.[80] |
2 | Helium | 1868 | 1895 | P. Janssen and N. Lockyer | W. Ramsay, T. Cleve, and N. Langlet | Janssen and Lockyer observed independently a yellow line in the solar spectrum that did not match any other element.
Years later, Ramsay, Cleve, and Langlet observed independently the element trapped in cleveite about the same time.[81] |
1869 | D. I. Mendeleev | Mendeleev arranges the 64 elements known at that time into the first modern periodic table and correctly predicts several others. | ||||
31 | Gallium | 1875 | P. E. L. de Boisbaudran | P. E. L. de Boisbaudran | Boisbaudran observed on a pyrenea blende sample some emission lines corresponding to the eka-aluminium that was predicted by Mendeleev in 1871 and subsequently isolated the element by electrolysis.[82][83] | |
70 | Ytterbium | 1878 | 1907 | J.C.G. de Marignac | G. Urbain | On October 22, 1878, Marignac reported splitting terbia into two new earths, terbia proper and ytterbia.[84] |
67 | Holmium | 1878 | M. Delafontaine | Delafontaine found it in samarskite and next year, Per Teodor Cleve split Marignac's erbia into erbia proper and two new elements, thulium and holmium.[85] | ||
69 | Thulium | 1879 | 1879 | T. Cleve | T. Cleve | Cleve split Marignac's erbia into erbia proper and two new elements, thulium and holmium.[86] |
21 | Scandium | 1879 | 1879 | F. Nilson | F. Nilson | Nilson split Marignac's ytterbia into pure ytterbia and a new element that matched 1871 Mendeleev's predicted eka-boron.[87] |
62 | Samarium | 1879 | 1879 | P.E.L. de Boisbaudran | P.E.L. de Boisbaudran | Boisbaudran noted a new earth in samarskite and named it samaria after the mineral.[88] |
64 | Gadolinium | 1880 | 1886 | J. C. G. de Marignac | F. L. de Boisbaudran | Marignac initially observed the new earth in terbia, and later Boisbaudran obtained a pure sample from samarskite.[89] |
59 | Praseodymium | 1885 | A. von Welsbach | Von Welsbach discovered two new distinct elements in ceria: praseodymium and neodymium.[90] | ||
60 | Neodymium | 1885 | A. von Welsbach | Von Welsbach discovered two new distinct elements in ceria: praseodymium and neodymium.[91] | ||
66 | Dysprosium | 1886 | P.E.L. de Boisbaudran | De Boisbaudran found a new earth in erbia.[91] | ||
32 | Germanium | 1886 | A. Winkler | In February 1886 Winkler found in argyrodite the eka-silicon that Mendeleev had predicted in 1871.[92] | ||
18 | Argon | 1894 | 1894 | Lord Rayleigh and W. Ramsay | Lord Rayleigh and W. Ramsay | They discovered the gas by comparing the molecular weights of nitrogen prepared by liquefaction from air and nitrogen prepared by chemical means. It is the first noble gas to be isolated.[93] |
63 | Europium | 1896 | 1901 | E.-A. Demarçay | E.-A. Demarçay | Demarçay found spectral lines of a new element in Lecoq's samarium, and separated this element several years later.[94] |
36 | Krypton | 1898 | 1898 | W. Ramsay and W. Travers | W. Ramsay and W. Travers | On May 30, 1898, Ramsay separated a noble gas from liquid argon by difference in boiling point.[95] |
10 | Neon | 1898 | 1898 | W. Ramsay and W. Travers | W. Ramsay and W. Travers | In June 1898 Ramsay separated a new noble gas from liquid argon by difference in boiling point.[95] |
54 | Xenon | 1898 | 1898 | W. Ramsay and W. Travers | W. Ramsay and W. Travers | On July 12, 1898 Ramsay separated a third noble gas within three weeks, from liquid argon by difference in boiling point.[96] |
84 | Polonium | 1898 | 1902 | P. and M. Curie | W. Marckwald | In an experiment done on July 13, 1898, the Curies noted an increased radioactivity in the uranium obtained from pitchblende, which they ascribed to an unknown element.[97] |
88 | Radium | 1898 | 1902 | P. and M. Curie | M. Curie | The Curies reported on December 26, 1898, a new element different from polonium, which Marie later isolated from uraninite.[98] |
86 | Radon | 1898 | 1910 | E. Dorn | W. Ramsay and R. Whytlaw-Gray | Dorn discovered a radioactive gas resulting from the radioactive decay of radium, isolated later by Ramsay and Gray.[99][100] |
89 | Actinium | 1899 | 1899 | A.-L. Debierne | A.-L. Debierne | Debierne obtained from pitchblende a substance that had properties similar to those of thorium.[101] |
71 | Lutetium | 1906 | 1906 | G. Urbain and C.A. von Welsbach | G. Urbain and C.A. von Welsbach | Urbain and von Welsbach proved independently that the old ytterbium also contained a new element.[102] |
75 | Rhenium | 1908 | 1919 | M. Ogawa | M. Ogawa | Ogawa found it in thorianite but assigned it as element 43 instead of 75 and named it nipponium.[103] In 1922 Walter Noddack, Ida Eva Tacke and Otto Berg announced its separation from gadolinite and gave it the present name.[59] |
72 | Hafnium | 1911 | 1922 | G. Urbain and V. Vernadsky | D. Coster and G. von Hevesy | Urbain claimed to have found the element in rare-earth residues, while Vernadsky independently found it in orthite. Neither claim was confirmed due to World War I. After the war, Coster and Hevesy found it by X-ray spectroscopic analysis in Norwegian zircon.[104] Hafnium was the last stable element to be discovered.[105] |
91 | Protactinium | 1913 | O.H.Göhring and K. Fajans | The two obtained the first isotope of this element that had been predicted by Mendeleev in 1871 as a member of the natural decay of 238U.[106] Originally isolated in 1900 by William Crookes.[107] | ||
43 | Technetium | 1937 | 1937 | C. Perrier and E. Segrè | C. Perrier & E.Segrè | The two discovered a new element in a molybdenum sample that was used in a cyclotron, the first synthetic element to be discovered. It had been predicted by Mendeleev in 1871 as eka-manganese.[108][109] |
87 | Francium | 1939 | M. Perey | Perey discovered it as a decay product of 227Ac.[110] Francium is the last element to be discovered in nature, rather than synthesized in the lab, although some of the "synthetic" elements that were discovered later (plutonium, neptunium, astatine) were eventually found in trace amounts in nature as well.[111] | ||
85 | Astatine | 1940 | R. Corson, R. MacKenzie and E. Segrè | Obtained by bombarding bismuth with alpha particles.[112] Later determined to occur naturally in minuscule quantities (<25 grams in earth's crust).[113] | ||
93 | Neptunium | 1940 | E.M. McMillan and H. Abelson | Obtained by irradiating uranium with neutrons, it is the first transuranium element discovered.[114] | ||
94 | Plutonium | 1940–1941 | Glenn T. Seaborg, Arthur C. Wahl, W. Kennedy and E.M. McMillan | Prepared by bombardment of uranium with deuterons.[115] | ||
95 | Americium | 1944 | G. T. Seaborg, A. James, O. Morgan and A. Ghiorso | Prepared by irradiating plutonium with neutrons during the Manhattan Project.[116] | ||
96 | Curium | 1944 | G. T. Seaborg, R. A. James and A. Ghiorso | Prepared by bombarding plutonium with alpha particles during the Manhattan Project[117] | ||
61 | Promethium | 1942 | 1945 | S. Wu, E.G. Segrè and H. Bethe | Charles D. Coryell, Jacob A. Marinsky, Lawrence E. Glendenin, and Harold G. Richter | It was probably first prepared in 1942 by bombarding neodymium and praseodymium with neutrons, but separation of the element could not be carried out. Isolation was performed under the Manhattan Project in 1945.[90] |
97 | Berkelium | 1949 | G. Thompson, A. Ghiorso and G. T. Seaborg (University of California, Berkeley) | Created by bombardment of americium with alpha particles.[118] | ||
98 | Californium | 1950 | S. G. Thompson, K. Street, Jr., A. Ghiorso and G. T. Seaborg (University of California, Berkeley) | Bombardment of curium with alpha particles.[119] | ||
99 | Einsteinium | 1952 | 1952 | A. Ghiorso et al. (Argonne Laboratory, Los Alamos Laboratory and University of California, Berkeley) | Formed in the first thermonuclear explosion in November 1952, by irradiation of uranium with neutrons; kept secret for several years.[120] | |
100 | Fermium | 1952 | A. Ghiorso et al. (Argonne Laboratory, Los Alamos Laboratory and University of California, Berkeley) | Formed in the first thermonuclear explosion in November 1952, by irradiation of uranium with neutrons; kept secret for several years.[121] | ||
101 | Mendelevium | 1955 | A. Ghiorso, G. Harvey, R. Choppin, S. G. Thompson and G. T. Seaborg | Prepared by bombardment of einsteinium with helium.[122] | ||
102 | Nobelium | 1958 | A. Ghiorso, T. Sikkeland, R. Walton and G. T. Seaborg | First prepared by bombardment of curium with carbon atoms.[123] | ||
103 | Lawrencium | 1961 | A. Ghiorso, T. Sikkeland, E. Larsh and M. Latimer | First prepared by bombardment of californium with boron atoms.[124] | ||
104 | Rutherfordium | 1968 | A. Ghiorso, M. Nurmia, J. Harris, K. Eskola and P. Eskola | Prepared by bombardment of californium with carbon atoms.[125] | ||
105 | Dubnium | 1970 | A. Ghiorso, M. Nurmia, K. Eskola, J. Harris and P. Eskola | Prepared by bombardment of californium with nitrogen atoms.[126] | ||
106 | Seaborgium | 1974 | A. Ghiorso, J. Nitschke, J. Alonso, C. Alonso, M. Nurmia, G. T. Seaborg, K. Hulet and W. Lougheed | Prepared by collisions of californium-249 with oxygen atoms.[127] | ||
107 | Bohrium | 1981 | G.Münzenberg et al. (GSI in Darmstadt) | Obtained by bombarding bismuth with chromium.[128] | ||
109 | Meitnerium | 1982 | G. Münzenberg, P. Armbruster et al. (GSI in Darmstadt) | Prepared by bombardment of bismuth with iron atoms.[129] | ||
108 | Hassium | 1984 | G. Münzenberg, P. Armbruster et al. (GSI in Darmstadt) | Prepared by bombardment of lead with iron atoms[130] | ||
110 | Darmstadtium | 1994 | S. Hofmann et al. (GSI in Darmstadt) | Prepared by bombardment of lead with nickel.[131] | ||
111 | Roentgenium | 1994 | S. Hofmann et al. (GSI in Darmstadt) | Prepared by bombardment of bismuth with nickel.[132] | ||
112 | Copernicium | 1996 | S. Hofmann et al. (GSI in Darmstadt) | Prepared by bombardment of lead with zinc.[133][134] | ||
114 | Flerovium | 1999 | Y. Oganessian et al. (JINR in Dubna) | Prepared by bombardment of plutonium with calcium[135] | ||
116 | Livermorium | 2000 | Y. Oganessian et al. (JINR in Dubna) | Prepared by bombardment of curium with calcium[136] | ||
118 | Ununoctium | 2002 | Y. Oganessian et al. (JINR in Dubna) | Prepared by bombardment of californium with calcium[137] | ||
115 | Ununpentium | 2003 | Y. Oganessian et al. (JINR in Dubna) | Prepared by bombardment of americium with calcium[138] | ||
113 | Ununtrium | 2004 | K. Morita et al. (RIKEN in Wako, Japan) | Prepared by bombardment of bismuth with zinc[139] | ||
117 | Ununseptium | 2010 | Y. Oganessian et al. (JINR in Dubna) | Prepared by bombardment of berkelium with calcium[140] |
z | značka | název | česky | nejstarší použití | nejstarší vzorek | objevitelé | místo | poznámka | |
---|---|---|---|---|---|---|---|---|---|
29 | Cu | Cuprum | měď | 9000 let př.n.l | 6000 let př.n.l. | Střední východ | Anatolie,
Turecko |
Měď byla pravděpodobně prvním kovem, který lidé těžili a zpracovávali. Původně byla získávána jako čistý kov, později tavením rud. Měď byla nejdůležitějším kovem doby měděné a bronzové. Měděné korálky datované cca 6000 let př.n.l. byly nalezeny v místě Çatal Höyük, Anatolia, Turecko. | |
- ↑ Copper History [online]. Rameria.com [cit. 2008-09-12]. Dostupné online.
- ↑ CSA – Discovery Guides, A Brief History of Copper
- ↑ The History of Lead – Part 3 [online]. Lead.org.au [cit. 2008-09-12]. Dostupné online.
- ↑ 47 Silver
- ↑ Silver Facts – Periodic Table of the Elements [online]. Chemistry.about.com [cit. 2008-09-12]. Dostupné online.
- ↑ 26 Iron [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ WEEKS, Mary Elvira; LEICHESTER, HENRY M. Discovery of the Elements. Easton, PA: Journal of Chemical Education, 1968. ISBN 0-7661-3872-0. LCCCN 68-15217. Kapitola Elements Known to the Ancients, s. 29–40.
- ↑ Notes on the Significance of the First Persian Empire in World History [online]. Courses.wcupa.edu [cit. 2008-09-12]. Dostupné online.
- ↑ History of Carbon and Carbon Materials – Center for Applied Energy Research – University of Kentucky [online]. Caer.uky.edu [cit. 2008-09-12]. Dostupné online.
- ↑ Chinese made first use of diamond. news.bbc.co.uk. BBC News, 17 May 2005. Dostupné online [cit. 2007-03-21].
- ↑ FERCHAULT DE RÉAUMUR, R-A. L'art de convertir le fer forgé en acier, et l'art d'adoucir le fer fondu, ou de faire des ouvrages de fer fondu aussi finis que le fer forgé (English translation from 1956). Paris, Chicago: [s.n.], 1722.
- ↑ Senese, Fred. Who discovered carbon? [online]. Frostburg State University, September 9, 2009 [cit. 2007-11-24]. Dostupné online. [nedostupný zdroj]
- ↑ 50 Tin [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ History of Metals [online]. Neon.mems.cmu.edu [cit. 2008-09-12]. Dostupné online.
- ↑ Sulfur History [online]. Georgiagulfsulfur.com [cit. 2008-09-12]. Dostupné online.
- ↑ Mercury and the environment — Basic facts [online]. Environment Canada, Federal Government of Canada, 2004 [cit. 2008-03-27]. Dostupné online.
- ↑ Craddock, P. T. et al. (1983), "Zinc production in medieval India", World Archaeology 15 (2), Industrial Archaeology, p. 13
- ↑ 30 Zinc [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ WEEKS, Mary Elvira. The Discovery of the Elements. Easton, PA: Journal of Chemical Education, 1933. ISBN 0-7661-3872-0. Kapitola III. Some Eighteenth-Century Metals, s. 21.
- ↑ a b Arsenic [online]. Los Alamos National Laboratory [cit. 2013-03-03]. Dostupné online.
- ↑ SHORTLAND, A. J. APPLICATION OF LEAD ISOTOPE ANALYSIS TO A WIDE RANGE OF LATE BRONZE AGE EGYPTIAN MATERIALS. Archaeometry. 2006-11-01, s. 657–669. DOI 10.1111/j.1475-4754.2006.00279.x.
- ↑ 15 Phosphorus [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 27 Cobalt [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 78 Platinum [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 28 Nickel [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ Bismuth [online]. Los Alamos National Laboratory [cit. 2013-03-03]. Dostupné online.
- ↑ 12 Magnesium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 01 Hydrogen [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ ANDREWS, A. C. The Encyclopedia of the Chemical Elements. Redakce Clifford A. Hampel. New York: Reinhold Book Corporation, 1968. Kapitola Oxygen, s. 272.
- ↑ 08 Oxygen [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ COOK, Gerhard A.; LAUER, CAROL M. The Encyclopedia of the Chemical Elements. Redakce Clifford A. Hampel. New York: Reinhold Book Corporation, 1968. Kapitola Oxygen, s. 499–500.
- ↑ ROZA, Greg. The Nitrogen Elements: Nitrogen, Phosphorus, Arsenic, Antimony, Bismuth. [s.l.]: [s.n.], 2010. ISBN 9781435853355. S. 7.
- ↑ 07 Nitrogen [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 17 Chlorine [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 25 Manganese [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 56 Barium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 42 Molybdenum [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 52 Tellurium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ IUPAC. 74 Tungsten [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 38 Strontium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ Lavoisier 1789 - 33 elements [online]. Elementymology & Elements Multidict [cit. 2015-01-24]. Dostupné online.
- ↑ Chronology – Elementymology [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ CRC Handbook of Chemistry and Physics. Redakce Lide David R..Chybí název periodika! New York: CRC Press, 2007–2008, s. 42. 978-0-8493-0488-0.
- ↑ M. H. Klaproth. Chemische Untersuchung des Uranits, einer neuentdeckten metallischen Substanz. Chemische Annalen. 1789, s. 387–403.
- ↑ E.-M. Péligot. Recherches Sur L'Uranium. Annales de chimie et de physique. 1842, s. 5–47. Dostupné online.
- ↑ Titanium [online]. Los Alamos National Laboratory, 2004 [cit. 2006-12-29]. Dostupné online.
- ↑ Barksdale, Jelks. The Encyclopedia of the Chemical Elements. Skokie, Illinois: Reinhold Book Corporation, 1968. LCCCN 68-29938. S. 732–38 "Titanium".
- ↑ Browning, Philip Embury. Introduction to the Rarer Elements. Kongl. Vet. Acad. Handl.. 1917, s. 137. Dostupné online.
- ↑ GADOLIN, Johan. Von einer schwarzen, schweren Steinart aus Ytterby Steinbruch in Roslagen in Schweden. Crell's Annalen. 1796, s. 313–329.
- ↑ VAUQUELIN, Louis Nicolas. Memoir on a New Metallic Acid which exists in the Red Lead of Sibiria. Journal of Natural Philosophy, Chemistry, and the Art. 1798, s. 146. Dostupné online.
- ↑ 04 Beryllium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 23 Vanadium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 41 Niobium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 73 Tantalum [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 46 Palladium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 58 Cerium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 76 Osmium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 77 Iridium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ a b 45 Rhodium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 19 Potassium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ a b 11 Sodium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 05 Boron [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 09 Fluorine [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 53 Iodine [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 03 Lithium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 48 Cadmium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 34 Selenium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 14 Silicon [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 13 Aluminium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 35 Bromine [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 90 Thorium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 57 Lanthanum [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 68 Erbium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 65 Terbium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 44 Ruthenium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 55 Caesium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ Caesium
- ↑ 37 Rubidium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 81 Thallium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 49 Indium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 02 Helium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 31 Gallium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ The New Metal Gallium [online]. June 15, 1878 [cit. 2016-06-16]. Dostupné online.
- ↑ 70 Ytterbium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 67 Holmium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 69 Thulium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 21 Scandium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 62 Samarium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 64 Gadolinium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ a b 59 Praseodymium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ a b 60 Neodymium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 32 Germanium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 18 Argon [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 63 Europium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ a b 10 Neon [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 54 Xenon [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 84 Polonium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 88 Radium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ Partington, J. R. Discovery of Radon. Nature. May 1957, s. 912. DOI 10.1038/179912a0. Bibcode 1957Natur.179..912P.
- ↑ Ramsay, W.; GRAY, R. W. La densité de l'emanation du radium. Comptes rendus hebdomadaires des séances de l'Académie des sciences. 1910, s. 126–128. Dostupné online.
- ↑ 89 Actinium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 71 Lutetium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ http://www.maik.ru/abstract/radchem/0/radchem0535_abstract.pdf
- ↑ 72 Hafnium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ Noddack, W.; TACKE, I.; BERG, O. Die Ekamangane. Naturwissenschaften. 1925, s. 567. DOI 10.1007/BF01558746. Bibcode 1925NW.....13..567..
- ↑ 91 Protactinium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ EMSLEY, John. Nature's Building Blocks. (Hardcover, First Edition). vyd. [s.l.]: Oxford University Press, 2001. ISBN 0-19-850340-7. S. 347.
- ↑ 43 Technetium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ History of the Origin of the Chemical Elements and Their Discoverers, Individual Element Names and History, "Technetium"
- ↑ 87 Francium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ Adloff, Jean-Pierre; Kaufman, George B. (2005-09-25). Francium (Atomic Number 87), the Last Discovered Natural Element. The Chemical Educator 10 (5). [2007-03-26]
- ↑ 85 Astatine [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ CLOSE, Frank E. Particle Physics: A Very Short Introduction. [s.l.]: Oxford University Press, 2004. Dostupné online. ISBN 978-0-19-280434-1. S. 2.
- ↑ 93 Neptunium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 94 Plutonium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 95 Americium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 96 Curium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 97 Berkelium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 98 Californium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 99 Einsteinium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 100 Fermium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 101 Mendelevium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 102 Nobelium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 103 Lawrencium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 104 Rutherfordium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 105 Dubnium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 106 Seaborgium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 107 Bohrium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 109 Meitnerium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 108 Hassium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 110 Darmstadtium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 111 Roentgenium [online]. Elements.vanderkrogt.net [cit. 2008-09-12]. Dostupné online.
- ↑ 112 Copernicium [online]. Elements.vanderkrogt.net [cit. 2009-07-17]. Dostupné online.
- ↑ Discovery of the Element with Atomic Number 112 [online]. www.iupac.org, 2009-06-26 [cit. 2009-07-17]. Dostupné online.
- ↑ OGANESSIAN, Yu. Ts.; UTYONKOV, V. K.; LOBANOV, Yu. V.; ABDULLIN, F. Sh.; POLYAKOV, A. N.; SHIROKOVSKY, I. V.; TSYGANOV, Yu. S. Synthesis of Superheavy Nuclei in the 48Ca + 244Pu Reaction. Physical Review Letters. October 1999, s. 3154. DOI 10.1103/PhysRevLett.83.3154. Bibcode 1999PhRvL..83.3154O.
- ↑ OGANESSIAN, Yu. Ts.; UTYONKOV, V. K.; LOBANOV, Yu. V.; ABDULLIN, F. Sh.; POLYAKOV, A. N.; SHIROKOVSKY, I. V.; TSYGANOV, Yu. S. Observation of the decay of 292116. Physical Review C. 2000, s. 011301. DOI 10.1103/PhysRevC.63.011301. Bibcode 2001PhRvC..63a1301O.
- ↑ OGANESSIAN, Yu. Ts.; UTYONKOV, V. K.; LOBANOV, Yu. V.; ABDULLIN, F. Sh.; POLYAKOV, A. N.; SAGAIDAK, R. N.; SHIROKOVSKY, I. V. Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions. Physical Review C. 2006, s. 044602. DOI 10.1103/PhysRevC.74.044602. Bibcode 2006PhRvC..74d4602O.
- ↑ OGANESSIAN, Yu. Ts.; UTYONKOV, V. K.; DMITRIEV, S. N.; LOBANOV, Yu. V.; ITKIS, M. G.; POLYAKOV, A. N.; TSYGANOV, Yu. S. Synthesis of elements 115 and 113 in the reaction 243Am + 48Ca. Physical Review C. 2005, s. 034611. DOI 10.1103/PhysRevC.72.034611. Bibcode 2005PhRvC..72c4611O.
- ↑ MORITA, Kosuke; MORIMOTO, Kouji; KAJI, Daiya; AKIYAMA, Takahiro; GOTO, Sin-ichi; HABA, Hiromitsu; IDEGUCHI, Eiji. Experiment on the Synthesis of Element 113 in the Reaction 209Bi(70Zn,n)278113. Journal of the Physical Society of Japan. 2004, s. 2593–2596. DOI 10.1143/JPSJ.73.2593. Bibcode 2004JPSJ...73.2593M.
- ↑ OGANESSIAN, Yu. Ts.; ABDULLIN, F. Sh.; BAILEY, P. D.; BENKER, D. E.; BENNETT, M. E.; DMITRIEV, S. N.; EZOLD, J. G. Synthesis of a New Element with Atomic Number Z=117. Physical Review Letters. April 2010, s. 142502. DOI 10.1103/PhysRevLett.104.142502. PMID 20481935. Bibcode 2010PhRvL.104n2502O.