Přeskočit na obsah

Wikipedista:Martin Krycha/Pískoviště

Z Wikipedie, otevřené encyklopedie

Malý modulární reaktor

[editovat | editovat zdroj]
Integrální malý modulární reaktor VOYGR

Malé modulární reaktory (SMR)[pozn. 1] jsou definovány Mezinárodní agenturou pro atomovou energii (MAAE) jako pokročilé reaktory o elektrickém výkonu až 300 MWe na jeden výkonový modul.[1] SMR jsou jaderné reaktory, které jsou rozměrově menší než konvenční jaderné reaktory. Díky jejich velikosti mohou být jejich komponenty továrně vyráběny v jedné lokalitě a následně dopravovány na místo výstavby jaderného zařízení, kde jsou následně sestaveny do elektrárenského celku. Název SMR plyne z procesů jejich výroby, velikosti, modulární konstrukce a neodkazuje na typ reaktoru a využívaný jaderný proces.[2]

SMR jsou zástupci pokročilé generace reaktorů III+ a více. Tyto reaktory přináší oproti předchozím generacím vylepšení v oblasti jaderné bezpečnosti a tak obsahují v současné době nejlepší dostupné jaderné technologie. Zvýšení úrovně jaderné bezpečnosti dosahují SMR především implementací pasivních bezpečnostních systémů, které ke svému fungování využívají fyzikální principy a jsou nezávislé na lidském faktoru.[3] Mezi reaktory III+ generace spadají převážně lehkovodní reaktory jako je UK SMR, SMR-160 a BWRX-300. Do generace IV spadají vysokoteplotní plynem chlazené reaktory, rychlé reaktory chlazené tekutými kovy a reaktory založené na roztavených solích.[4]

V roce 2023 je ve vývoji přes 80 SMR celkově v 19 zemích světa. První komerční plovoucí SMR byl uveden do provozu v Rusku 22. května 2020 v elektrárně Akademik Lomonosov[5] a první komerční SMR na pevnině byl uveden do provozu v prosinci 2021 v čínské elektrárně Shidao Bay.[6]

Technologie

[editovat | editovat zdroj]

Design malých modulárních reaktorů je především stavěn na jednoduchosti a spolehlivosti. Místo aktivních bezpečnostních systémů se zařazují pasivní bezpečnostní systémy, které jsou poháněny přírodními silami jako je například gravitace, vztlak a konvekce tepla.

Používáním pasivních bezpečnostních systémů je dosažena vyšší provozní spolehlivost, podpora koncepce ochrany do hloubky a zároveň dochází k praktické eliminaci velkých a časných úniků radioaktivních látek do okolí. Takto koncipované jaderné zařízení není v případě havárie závislé na vnější dodávce elektrické energie a je schopné se samo pasivně odstavit v případě projektové havárie.[7]

Přirozená cirkulace chladiva

[editovat | editovat zdroj]

Popsat přirozenou cirkulaci, přidat pár obrázků, popsat DiD, nouzové odstavení některých SMR designů atp.[8]

Zjednodušené technologické schéma integrálního tlakovodního SMR

Typy malých modulárních reaktorů

[editovat | editovat zdroj]

Tlakovodní SMR na lehkou vodu

[editovat | editovat zdroj]

Tlakovodní typ reaktorů (PWR) je světově nejrozšířenějším typem jaderných reaktorů - tvoří 60 % z celkového počtu reaktorů ve světě[9]. Palivem těchto reaktorů je oxid uraničitý (UO2) , který je pro evropské jaderné reaktory, pracující na tepelných neutronech, zpravidla obohacován izotopem uranu 235U do 5 %[10] a to kvůli přepravním možnostem při výrobě obohaceného paliva. Tato hladina obohacení je stanovena normami ISO 7195, ANSI N14.1 a ASTM C-996-15.

Štěpná řetězová reakce probíhající v primárním okruhu je moderována demineralizovanou lehkou vodou. Demineralizovaná lehká voda zároveň působí jako teplonosné médium (chladící médium) a odvádí teplo vzniklé v aktivní zóně reaktoru do parogenerátoru, kde se tepelná energie přenáší do sekundárního okruhu (okruhu páry). Tlak vody v primárním okruhu se u tlakovodních SMR pohybuje v rozmezí od 12 do 17 MPa a teplota v rozmezí 250-330 °C[11][pozn. 2]. Velký tlak je využíván pro zvýšení bodu varu a tím zlepšení odvodu tepla z reaktoru.

Tlakovodní SMR vznikají také v integrální verzi tohoto typu reaktoru (iPWR). Tyto reaktory dosahují zvýšené bezpečnosti integrací parogenerátoru, kompenzátoru objemu a mechanizmů řídicích tyčí do tlakové nádoby reaktoru.[12]

Uvažované designy SMR pro výstavbu v České republice byly zmíněny na 6. ročníku studentské konference CENELÍN v rámci prezentace Skupiny ČEZ.

Varné SMR

[editovat | editovat zdroj]

Varné reaktory (BWR) také používají demineralizovanou lehkou vodu jako moderátor i chladivo. Na rozdíl od tlakovodních reaktorů je voda v primárním okruhu uváděná do varu a ve formě páry předává svoji energii turbíně. Varné reaktory teda nemají okruh páry jako tlakovodní reaktory a nemají tedy parogenerátor.

V závislosti na designu se teplota vody v primárním okruhu u varných SMR pohybuje okolo 290 °C a tlak vody se pohybuje okolo 7 MPa.[11]

Vysokoteplotní plynem chlazené SMR

[editovat | editovat zdroj]

Vysokoteplotní plynem chlazené (HTGR) SMR jsou reaktory, které využívají štěpení pomocí tepelných neutronů. Pro snížení energie neutronů se používá grafitový moderátor. Chladivem těchto reaktorů je helium.[13]

Maximální teplota chladiva se pohybuje v rozmezí 750-950 °C a proto jsou tyto reaktory vhodné pro vysokoteplotní aplikace jako je například vysokoteplotní elektrolýza, která vyžaduje teploty v rozmezí 700-1000 °C[14]. Palivo je u těchto SMR obohacené izotopem uranu 235U až do 20 %[pozn. 3] a u některých SMR designů dosahuje úrovně vyhoření až 165 GWd/t.[11]

Kovy používané jako chladivo
Chladivo Teplota tání Teplota varu
Sodík 97.72 °C 883 °C
NaK −11 °C 785 °C
Rtuť −38.83 °C 356.73 °C
Olovo 327.46 °C 1749 °C
Eutektická slitina Pb-Bi 123.5 °C 1670 °C
Cín 231.9 °C 2602 °C

Rychlé reaktory chlazené tekutými kovy

[editovat | editovat zdroj]

Rychlé reaktory chlazené tekutými kovy (LMFR) jsou reaktory využívající fyzikálních a chemických vlastností tekutých kovů, které zde slouží jako chladivo primárního okruhu. Díky své tepelné vodivosti, která je 10-100 krát větší než u vody, tyto reaktory dosahují lepšího odvodu tepla a důsledkem je zvýšení výkonové hustoty[15]. LMFR pracují na rychlých neutronech, takže nemají moderátor.[16]

SMR designy používají jako chladivo převážně olovo, sodík a euktetickou slitinu olova a bismutu (Pb 44,5 hm. %, Bi 55,5 hm. %[17]). Minimální teploty se proto u těchto SMR designů pohybují v rozsahu 340-420 °C v závislosti na použitém chladivu.

Reaktory založené na roztavených solích

[editovat | editovat zdroj]

Reaktory založené na roztavených solích (MSR) jsou reaktory pracující s energií neutronů v rozsahu tepelných, rezonančních a rychlých neutronů. Štěpitelný materiál je buďto oddělený od tekutých solí v primárním okruhu (pevné palivo), nebo smíchán přímo s tekutými solemi (tekuté palivo) například na fluorid uraničitý (UF4), fluorid plutonitý (PuF3) nebo paliva na bázi chloridových solí. Moderátorem může být grafit, těžká voda, soli a v případě rychlých reaktorů se moderátor neuplatňuje.[18]

MSR reaktory pracují s tlakem v primárním okruhu v rozsahu atmosférického tlaku až do 1 MPa. Většina designů je navržena na práci při atmosférickém tlaku a to je jednou z hlavních výhod MSR.[11]

Seznam SMR projektů

[editovat | editovat zdroj]

     vývoj      ve výstavbě      v provozu      licencování

Název Výkon Typ Výrobce Stav
CNP-300 300 MWe PWR SNERDI/CNNC, Pákistán & Čína v provozu
ACP100/Linglong One 125 MWe iPWR CNNC, Čína ve výstavbe
ACPR100 140 MWe iPWR CGN, Čína vývoj
ACPR50S 60 MWe PWR CGN, Čína vývoj
AHWR-300 LEU 300 MWe PHWR BARC, Indie vývoj
ARC-100 100 MWe LMFR (Na) ARC with GE Hitachi, USA vývoj
BANDI-60S 60 MWe PWR Kepco, South Korea vývoj
BREST-OD-300 300 MWe LMFR (Pb) RDIPE, Rusko ve výstavbe
BWRX-300 300 MWe BWR GE Hitachi, USA licencování
CAP200 LandStar-V 220 MWe PWR SNERDI/SPIC, Čína vývoj
CR-100[19] 100 MWt PWR ÚJV ŘEŽ, Česko vývoj
DAVID[20] 50 MWe PWR Czechatom Design Bureau, Česko vývoj
EM2 240 MWe HTR, FNR General Atomics (USA) vývoj
FMR 50 MWe HTR, FNR General Atomics + Framatome vývoj
HTR-PM 210 MWe HTR INET, CNEC & Huaneng, Čína ve výstavbe
IMR 350 MWe iPWR Mitsubishi Heavy Ind, Japan* vývoj
Integrální MSR 192 MWe MSR Terrestrial Energy, Kanada vývoj
KLT-40S 35 MWe PWR OKBM, Rusko v provozu
Moltex SSR-U 150 MWe MSR/FNR Moltex, UK vývoj
Moltex SSR-W 300 MWe MSR Moltex, UK vývoj
mPower 195 MWe iPWR BWXT, USA* licencování
Natrium 345 MWe LMFR (Na) TerraPower + GE Hitachi, USA vývoj
NuScale Power Module 77 MWe iPWR NuScale Power + Fluor, USA vývoj
NUWARD 170 MWe PWR EDF, CEA, Naval Group, Framatome, TA, TE licencování
PB-FHR 100 MWe MSR UC Berkeley, USA vývoj
PBMR 165 MWe HTR PBMR, Jižní Afrika* vývoj
PHWR-220 220 MWe PHWR NPCIL, Indie v provozu
PRISM 311 MWe LMFR (Na) GE Hitachi, USA vývoj
RITM-200 50 MWe iPWR OKBM, Rusko v provozu
RITM-200M 50 MWe iPWR OKBM, Rusko vývoj
RITM-200N 55 MWe iPWR OKBM, Rusko vývoj
Seaborg CMSR 100 MWe MSR Seaborg, Dánsko vývoj
SMART 100 MWe iPWR KAERI, South Korea licencování
SMR-160 160 MWe PWR Holtec, USA + SNC-Lavalin, Kanada licencování
SNP350 350 MWe PWR SNERDI, Čína vývoj
SVBR-100 100 MWe LMFR (Pb-Bi) AKME-Engineering, Rusko* vývoj
Teplator[21] 150 MWt PHWR ZČU v Plzni & CIIRC ČVUT v Praze, Česko vývoj
Thorcon TMSR 250 MWe MSR Martingale, USA vývoj
TMSR-SF 100 MWt MSR SINAP, Čína vývoj
UK SMR 470 MWe PWR Rolls-Royce SMR, UK licencování
VBER-300 300 MWe PWR OKBM, Rusko vývoj
VK-300 300 MWe BWR NIKIET, Rusko vývoj
Westinghouse LFR 300 MWe LMFR (Pb) Westinghouse, USA vývoj
Westinghouse SMR 225 MWe iPWR Westinghouse, USA* vývoj
Xe-100 80 MWe HTR X-energy, USA vývoj
Tabulka byla vytvořena 10. 7. 2023 na základě článku https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx
  1. V České republice známé též pod názvem MMR. V anglické verzi zkratky SMR představuje Small Modular Reactor.
  2. V případě tlakovodních SMR, které jsou určeny pouze k produkci tepelné energie, se teplota v primárním okruhu může pohybovat i pod hranicí 200 °C. Například projekt ZČU nazvaný Teplátor dosahuje teplot vody 150 °C.
  3. Obohacení nad 5 % se používá pouze v zemích, které nejsou omezené výše zmíněnými normami

Související články

[editovat | editovat zdroj]

Platformy informující o SMR

[editovat | editovat zdroj]
  1. Small Modular Reactor (SMR) Regulators' Forum. www.iaea.org [online]. 2018-01-18 [cit. 2023-07-10]. Dostupné online. (anglicky) 
  2. asmedigitalcollection.asme.org [online]. [cit. 2023-07-10]. Dostupné online. doi:10.1115/icone26-81604. 
  3. AGENCY, International Atomic Energy. Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants. [s.l.]: [s.n.] Dostupné online. S. 1–160. (anglicky) 
  4. WWW.FG.CZ, 2023, FG Forrest, a s. Základní typy jaderných reaktorů. Skupina ČEZ - O Společnosti [online]. [cit. 2023-07-10]. Dostupné online. 
  5. Akademik Lomonosov. [s.l.]: [s.n.] Dostupné online. (anglicky) Page Version ID: 1152205648. 
  6. Shidao Bay Nuclear Power Plant. [s.l.]: [s.n.] Dostupné online. (anglicky) Page Version ID: 1143502026. 
  7. Practical Elimination Applied to New NPP designs - Key Elements and Expectations | WENRA. www.wenra.eu [online]. [cit. 2023-08-17]. Dostupné online. 
  8. AGENCY, International Atomic Energy. Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants. [s.l.]: [s.n.] Dostupné online. S. 1–160. (anglicky) 
  9. WWW.FG.CZ, 2023, FG Forrest, a s. Základní typy jaderných reaktorů. Skupina ČEZ - O Společnosti [online]. [cit. 2023-07-11]. Dostupné online. 
  10. AGENCY, International Atomic Energy. Light Water Reactor Fuel Enrichment beyond the Five Per Cent Limit: Perspectives and Challenges. [s.l.]: [s.n.] Dostupné online. S. 1–56. (anglicky) 
  11. a b c d Advances in Small Modular Reactor Technology Developments (2022) [online]. IAEA [cit. 2023-07-11]. Dostupné online. 
  12. ZELIANG, Chireuding; MI, Yi; TOKUHIRO, Akira. Integral PWR-Type Small Modular Reactor Developmental Status, Design Characteristics and Passive Features: A Review. Energies. 2020-06-05, roč. 13, čís. 11, s. 2898. Dostupné online [cit. 2023-07-11]. ISSN 1996-1073. doi:10.3390/en13112898. (anglicky) 
  13. Gas cooled reactors. www.iaea.org [online]. 2016-04-13 [cit. 2023-07-13]. Dostupné online. (anglicky) 
  14. ACAR, Canan; DINCER, Ibrahim. 3.1 Hydrogen Production. Příprava vydání Ibrahim Dincer. Oxford: Elsevier Dostupné online. ISBN 978-0-12-814925-6. doi:10.1016/b978-0-12-809597-3.00304-7. S. 1–40. (anglicky) DOI: 10.1016/B978-0-12-809597-3.00304-7. 
  15. AGENCY, International Atomic Energy. Liquid Metal Coolants for Fast Reactors Cooled by Sodium, Lead and Lead-Bismuth Eutectic. [s.l.]: [s.n.] Dostupné online. S. 1–82. (anglicky) 
  16. REVANKAR, Shripad T. Chapter Four - Nuclear Hydrogen Production. Příprava vydání Hitesh Bindra, Shripad Revankar. [s.l.]: Academic Press Dostupné online. ISBN 978-0-12-813975-2. doi:10.1016/b978-0-12-813975-2.00004-1. S. 49–117. (anglicky) DOI: 10.1016/B978-0-12-813975-2.00004-1. 
  17. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies – 2015 Edition. Nuclear Energy Agency (NEA) [online]. [cit. 2023-07-17]. Dostupné online. (anglicky) 
  18. SERP, Jérôme; ALLIBERT, Michel; BENEŠ, Ondřej. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Progress in Nuclear Energy. 2014-11-01, roč. 77, s. 308–319. Dostupné online [cit. 2023-07-17]. ISSN 0149-1970. doi:10.1016/j.pnucene.2014.02.014. (anglicky) 
  19. CR-100 – Small Modular Reactor | Malý modulární reaktor [online]. [cit. 2023-07-17]. Dostupné online. (anglicky) 
  20. DAVID SMR | Witkowitz Atomica. www.witkowitz-atomica.cz [online]. [cit. 2023-07-17]. Dostupné online. 
  21. TEPLATOR | Jaderné řešení pro levné a bezpečné centrální vytápění. Teplator.cz [online]. [cit. 2023-07-17]. Dostupné online.