Přeskočit na obsah

Vícerozměrný integrál

Z Wikipedie, otevřené encyklopedie

Vícerozměrný integrál je a určitý integrál reálné funkce více proměnných na dané množině. Zapisuje se , kde funkce se nazývá integrand[1] a je daná vhodná množina. Tento zápis se často zkracuje na

Vícerozměrný integrál je různý pojem od vícenásobný integrál, tedy od postupné integrace po složkách, neboť vícenásobné integrály mohou existovat i pro neintegrovatelné funkce.[pozn. 1]

Vícerozměrný integrál se často vyčísluje pomocí Fubiniovy věty a substituce souřadnic.

Dvojný integrál jako objem pod plochou.

Často je nutno udělat součet hodnot nějaké funkce na vícerozměrné množině. Například objem nějakého tělesa, hmotnost tělesa s nekonstantní hustotou, energii nějakého pole. Takovým součtem je právě vícerozměrný integrál.

Dvojný integrál na obdélníku

[editovat | editovat zdroj]

Pro mějme funkci .

Rozdělíme-li každý z intervalů na konečnou množinu disjunktních podintervalů , získáme dělení n-rozměrného intervalu na systém intervalů , pro které platí .

(n+1)-rozměrný objem pod n-rozměrnou plochou (grafem funkce ) na intervalu můžeme aproximovat Riemannovým součtem:

,

kdeXk jje prvek intervalu Ik and σ(Ik) je míra intervalu Ik (tedy součin délek jednotlivých jednorozměrných intervalů ) .

Řekneme, že funkce f je Riemannovsky integrovatelná, jestliže existuje konečná limita přes všechna dělení intervalu I na podintervaly míry maximálně δ:

.[3]

Jestliže je f is Riemannovsky integrovatelná, tak S se nazývá (vícerozměrný) Riemannův integral funkce f na intervalu I a píše se

.

Na měřitelné množině

[editovat | editovat zdroj]

Buď funkce omezená na neprázdné měřitelné množině . Řekneme, že funkce je na množině (Riemannovsky) integrovatelná, je-li funkce definovaná předpisem [pozn. 2]

integrovatelná na nějakém uzavřeném vícerozměrném intervalu takovém, že .

Vícenásobným (Riemannovým) integrálem funkce na množině pak rozumíme číslo .[4] [pozn. 3]

Pro prázdnou množinu definujeme pro každou funkci .[4]

Speciální případy

[editovat | editovat zdroj]

V případě, že , tak se nazývá dvojný integrál funkce f na M, dále pro je trojný integrál funkce f na M.

Vlastnosti

[editovat | editovat zdroj]

Většinu vlastností má vícerozměrný integrál stejné jako jednorozměrný určitý integrál. Mezi nimi linearitu, komutativitu.

Důležitou vlastností je, že hodnota vícenásobného integrálu nezávisí na pořadí integrace. Toto je známo jako Fubiniova věta.

Podmínky integrovatelnosti

[editovat | editovat zdroj]

Je-li funkce spojitá v uzavřeném intervalu , pak existuje .[5]

Podrobnější informace naleznete v článku Aplikace integrálu.

Mezi aplikace vícerozměrného integrálu patří výpočet objemu, hmotnosti a umístění těžiště. Dále například výpočet energie fyzikálního pole.

  1. Příkladem budiž funkce. Její dvojnásobné integrály a jsou různé. A tedy tato funkce není integrovatelná.[2]
  2. je definována v celém .[4]
  3. Tato definice nezávisí na volbě intervalu takového, že .[4]

V tomto článku byl použit překlad textu z článku Multiple integral na anglické Wikipedii.

  1. MATEMATICKÁ ANALÝZA pro FIT [online]. Brno: VUT [cit. 2022-10-11]. S. 145. Dostupné online. 
  2. Jan Čepička, Petr Girg, Petr Nečesal, Josef Polák. Herbář funkcí [online]. Ostrava: VŠB TUO, 2011 [cit. 2022-10-11]. Dostupné online. 
  3. RUDIN, Walter. Principles of Mathematical Analysis. 3rd. vyd. [s.l.]: McGraw–Hill (Walter Rudin Student Series in Advanced Mathematics). Dostupné online. ISBN 978-0-07-054235-8. 
  4. a b c d VODSTRČIL, Petr; BOUCHALA, JIří. INTEGRÁLNÍ POČET FUNKCÍ VÍCE PROMĚNNÝCH [online]. Vysoká škola báňská – Technická univerzita Ostrava a Západočeská univerzita v Plzni, 13. června 2012 [cit. 2022-11-11]. Kapitola 1.4 Dvojný integrál na měřitelné množině, s. 11. Dostupné online. 
  5. VODSTRČIL, Petr; BOUCHALA, JIří. INTEGRÁLNÍ POČET FUNKCÍ VÍCE PROMĚNNÝCH [online]. [cit. 2022-11-11]. Kapitola 1.2 Dvojný integrál na intervalu, s. 5. 

Související články

[editovat | editovat zdroj]