Meneláova věta
Meneláova věta je tvrzení afinní geometrie o trojúhelnících tradičně připisované starořeckému matematikovi Menelaovi Alexandrijskému. Je duální k Cévově větě.
Znění Meneláovy věty
[editovat | editovat zdroj]Máme-li dány body A,B a C, které tvoří trojúhelník ABC, a jiné body D, E a F, které leží na přímkách BC, AC a AB, pak body D, E a F leží na přímce právě tehdy, když platí
V tomto výrazu uvažujeme délky úseček se znaménkem, které je dáno tím, nacházejí-li se body D, E a F uvnitř patřičných úseček, nebo vně. Například podíl AF/FB je kladný právě tehdy, pokud bod F leží na úsečce AB.
Důkaz
[editovat | editovat zdroj]Nejdříve ověříme znaménko levé strany a ukážeme, že musí být vždy záporné. To plyne z toho, že přímka buď trojúhelník neprotne vůbec, nebo jej protne právě ve dvou bodech (viz Paschův axiom). Na levé straně je tedy lichý počet záporných zlomků a jejich součin bude vždy záporný.
Spustíme kolmice a, b a c z bodů A, B a C na přímku DEF. Z podobnosti trojúhelníků plyne, že
tedy
Ještě zbývá dokázat, že pokud by body na přímce neležely, pak rovnost neplatí. Uvažujme bod X na přímce AB, který je různý od bodu F. Označme AF, AX a AB po řadě jako n, n', s. Předpokládejme, že rovnost platí i pro X. Pak platí
neboli
odkud uvedením na společného jmenovatele a zjednodušením dostaneme . Tedy , čímž je důkaz hotov.
Externí odkazy
[editovat | editovat zdroj]- Obrázky, zvuky či videa k tématu Meneláova věta na Wikimedia Commons
- Meneláova věta Archivováno 9. 2. 2007 na Wayback Machine. — na PlanetMath (anglicky)
- Meneláova věta — na Mathworldu (anglicky)