Přeskočit na obsah

Laméovy koeficienty (křivočaré souřadnice)

Z Wikipedie, otevřené encyklopedie
Tento článek je o koeficientech křivočarých souřadnic. O koeficientech popisujících elastické deformace pojednává článek Laméovy koeficienty (mechanika).

Laméovy koeficienty (též Lamého koeficienty[1]) jsou v matematice výrazy, které udávají vztah mezi i-tým bázovým vektorem a derivací podle i-té souřadnice . Vyskytují se ve vzorcích pro výpočet gradientu, divergence a rotace v jiných než kartézských souřadnicích (např. křivočarých). V případě ortogonálních souřadnic jsou vektory derivace podle souřadnice a gradient souřadnice rovnoběžné a podíl jejich délek je kvadrát odpovídajícího Lamého koeficientu.[2] Jsou pojmenovány po Gabrielu Laméovi.

Mějme n-rozměrný afinní prostor (tedy například trojrozměrný euklidovský prostor) a na něm zavedené souřadnice . Dokážeme tedy vyjádřit zobrazení , které n-tici souřadnic přiřadí jim odpovídající bod z . Je-li toto zobrazení diferencovatelné, Lamého koeficienty definujeme jako:

Každý Lamého koeficient je tedy vlastně skalární pole. Protože závislost na konkrétních souřadnicích je zřejmá z definice, je zvykem místo psát pouze .

Protože se bázové vektory definují jako jednotkové vektory ve směru , platí:

[2]

Jsou-li souřadnice navíc ortogonální, tedy platí-li pro každé (zde nám již nestačí afinní prostor, potřebujeme unitární prostor se skalárním součinem), potom navíc platí:

[2]

kde je polohový vektor v kartézských souřadnicích a předpokládáme, že a .

  1. KRTOUŠ, Pavel. Klasická elektrodynamika. [s.l.]: [s.n.], 2019. Kapitola Matematický formalismus. 
  2. a b c LEDVINKA, Tomáš. Poznámky k přednášce Klasická elektrodynamika. [s.l.]: [s.n.], 2020. Dostupné online.