Přeskočit na obsah

Soubor:Pythagoras tree 1 1 13.svg

Obsah stránky není podporován v jiných jazycích.
Z Wikipedie, otevřené encyklopedie

Původní soubor (soubor SVG, nominální rozměr: 618 × 420 pixelů, velikost souboru: 1,7 MB)

Popis

Popis
English: Pythagoras tree
Français : Arbre de Pythagore
Datum
Zdroj Vlastní dílo
Autor Guillaume Jacquenot Gjacquenot

Source code (MATLAB)

function M = Pythagor_tree(m,n,Colormap)
% function M = Pythagor_tree(m,n,Colormap)
% Compute Pythagoras_tree
% The Pythagoras Tree is a plane fractal constructed from squares.
% It is named after Pythagoras  because each triple of touching squares 
% encloses a right triangle, in a configuration traditionally used to
% depict the Pythagorean theorem.
% http://en.wikipedia.org/wiki/Pythagoras_tree
%
% Input : 
%       - m ( double m> 0) is the relative length of one of the side
%         right-angled triangle. The second side of the right-angle is 
%         taken to be one.
%         To have a symmetric tree, m has to be 1.
%       - n ( integer ) is the level of recursion.
%         The number of elements of tree is equal to 2^(n+1)-1.
%         A reasonnable number for n is 10.
%       - Colormap: String used to generate color of the different levels
%         of the tree.
%       All these arguments are optional: the function can run with
%       argument.
% Output : 
%       - Matrix M: Pyhagoras tree is stored in a matrix M.
%         This matrix has 5 columns.
%         Each row corresponds to the coordinate of each square of the tree
%         The two first columns give the bottom-left position of each
%         square. The third column corresponds to the orientation angle of
%         each square. The fourth column gives the size of each square. The
%         fifth column specifies the level of recursion of each square.
%         The first row corresponds to the root of the tree. It is always
%         the same
%         M(1,:) = [0 -1 0 1 1];
%         The leaf located at row i will give 2 leaves located at 2*i and
%         2*i+1.
%       - A svg file giving a vectorial display of the tree. The name of
%         file is generated from the parameter m,n,Colormap. The file is
%         stored in the current folder.
%
% 2010 02 29
% Guillaume Jacquenot
% guillaume dot jacquenot at gmail dot com

%% Check inputs
narg = nargin;
if narg <= 2
    % Colormap = 'jet';
    Colormap = 'summer';
    if narg <= 1
        n = 12; % Recursion level    
        if nargin == 0
            m = 0.8;
        end
    end
end
if m <= 0
	error([mfilename ':e0'],'Length of m has to be greater than zero');
end
if rem(n,1)~=0
	error([mfilename ':e0'],'The number of level has to be integer');
end
if ~iscolormap(Colormap)
	error([mfilename ':e1'],'Input colormap is not valid');
end
%% Compute constants
d      = sqrt(1+m^2);                  % 
c1     = 1/d;                          % Normalized length 1
c2     = m/d;                          % Normalized length 2
T      = [0 1/(1+m^2);1 1+m/(1+m^2)];  % Translation pattern  
alpha1 = atan2(m,1);                   % Defines the first rotation angle
alpha2 = alpha1-pi/2;                  % Defines the second rotation angle
pi2    = 2*pi;                         % Defines pi2
nEle   = 2^(n+1)-1;                    % Number of elements (square)
M      = zeros(nEle,5);                % Matrice containing the tree
M(1,:) = [0 -1 0 1 1];                 % Initialization of the tree

%% Compute the level of each square contained in the resulting matrix
Offset = 0;
for i = 0:n
    tmp = 2^i;
    M(Offset+(1:tmp),5) = i;
    Offset = Offset + tmp;
end
%% Compute the position and size of each square wrt its parent
for i = 2:2:(nEle-1)
    j          = i/2;
    mT         = M(j,4) * mat_rot(M(j,3)) * T;
    Tx         = mT(1,:) + M(j,1);
    Ty         = mT(2,:) + M(j,2);    
    theta1     = rem(M(j,3)+alpha1,pi2);
    theta2     = rem(M(j,3)+alpha2,pi2);
    M(i  ,1:4) = [Tx(1) Ty(1) theta1 M(j,4)*c1];
    M(i+1,1:4) = [Tx(2) Ty(2) theta2 M(j,4)*c2];
end
%% Display the tree
Pythagor_tree_plot(M,n);

%% Write results to an SVG file
Pythagor_tree_write2svg(m,n,Colormap,M);

function Pythagor_tree_write2svg(m,n,Colormap,M)
% Determine the bounding box of the tree with an offset
% Display_metadata = false;
Display_metadata = true;

nEle    = size(M,1);
r2      = sqrt(2);
LOffset = M(nEle,4) + 0.1;
min_x   = min(M(:,1)-r2*M(:,4)) - LOffset;
max_x   = max(M(:,1)+r2*M(:,4)) + LOffset;
min_y   = min(M(:,2)          ) - LOffset;  % -r2*M(:,4)
max_y   = max(M(:,2)+r2*M(:,4)) + LOffset;

% Compute the color of tree
ColorM = zeros(n+1,3);
eval(['ColorM = flipud(' Colormap '(n+1));']);
co   = 100;
Wfig = ceil(co*(max_x-min_x));
Hfig = ceil(co*(max_y-min_y));
filename = ['Pythagoras_tree_1_' strrep(num2str(m),'.','_') '_'...
             num2str(n) '_' Colormap '.svg'];
fid  = fopen(filename, 'wt');
fprintf(fid,'<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n');
if ~Display_metadata
    fprintf(fid,'<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"\n'); 
    fprintf(fid,'  "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n');
end
fprintf(fid,'<svg width="%d" height="%d" version="1.1"\n',Wfig,Hfig); % 
% fprintf(fid,['<svg width="12cm" height="4cm" version="1.1"\n']); % Wfig,

% fprintf(fid,['<svg width="15cm" height="10cm" '...
%              'viewBox="0 0 %d %d" version="1.1"\n'],...
%              Wfig,Hfig);
if Display_metadata
    fprintf(fid,'\txmlns:dc="http://purl.org/dc/elements/1.1/"\n');
    fprintf(fid,'\txmlns:cc="http://creativecommons.org/ns#"\n');
    fprintf(fid,['\txmlns:rdf="http://www.w3.org/1999/02/22'...
                 '-rdf-syntax-ns#"\n']);
end
fprintf(fid,'\txmlns:svg="http://www.w3.org/2000/svg"\n');
fprintf(fid,'\txmlns="http://www.w3.org/2000/svg"\n');
fprintf(fid,'\txmlns:xlink="http://www.w3.org/1999/xlink">\n');

if Display_metadata
    fprintf(fid,'\t<title>Pythagoras tree</title>\n');
    fprintf(fid,'\t<metadata>\n');
    fprintf(fid,'\t\t<rdf:RDF>\n');
    fprintf(fid,'\t\t\t<cc:Work\n');
    fprintf(fid,'\t\t\t\trdf:about="">\n');
    fprintf(fid,'\t\t\t\t<dc:format>image/svg+xml</dc:format>\n');
    fprintf(fid,'\t\t\t\t<dc:type\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://purl.org/dc/dcmitype/StillImage" />\n');
    fprintf(fid,'\t\t\t\t<dc:title>Pythagoras tree</dc:title>\n');
    fprintf(fid,'\t\t\t\t<dc:creator>\n');
    fprintf(fid,'\t\t\t\t\t<cc:Agent>\n');
    fprintf(fid,'\t\t\t\t\t\t<dc:title>Guillaume Jacquenot</dc:title>\n');
    fprintf(fid,'\t\t\t\t\t</cc:Agent>\n');
    fprintf(fid,'\t\t\t\t</dc:creator>\n');
    fprintf(fid,'\t\t\t\t<cc:license\n');
    fprintf(fid,'\t\t\t\t\t\trdf:resource="http://creativecommons.org/licenses/by-nc-sa/3.0/" />\n');
    fprintf(fid,'\t\t\t</cc:Work>\n');
    fprintf(fid,'\t\t\t<cc:License\n');
    fprintf(fid,'\t\t\t\trdf:about="http://creativecommons.org/licenses/by-nc-sa/3.0/">\n');
    fprintf(fid,'\t\t\t\t<cc:permits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Reproduction" />\n');
    fprintf(fid,'\t\t\t\t<cc:permits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Reproduction" />\n');
    fprintf(fid,'\t\t\t\t<cc:permits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Distribution" />\n');
    fprintf(fid,'\t\t\t\t<cc:requires\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Notice" />\n');
    fprintf(fid,'\t\t\t\t<cc:requires\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Attribution" />\n');
    fprintf(fid,'\t\t\t\t<cc:prohibits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#CommercialUse" />\n');
    fprintf(fid,'\t\t\t\t<cc:permits\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#DerivativeWorks" />\n');
    fprintf(fid,'\t\t\t\t<cc:requires\n');
    fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#ShareAlike" />\n');
    fprintf(fid,'\t\t\t</cc:License>\n');
    fprintf(fid,'\t\t</rdf:RDF>\n');
    fprintf(fid,'\t</metadata>\n'); 
end
fprintf(fid,'\t<defs>\n');
fprintf(fid,'\t\t<rect width="%d" height="%d" \n',co,co);
fprintf(fid,'\t\t\tx="0" y="0"\n');
fprintf(fid,'\t\t\tstyle="fill-opacity:1;stroke:#00d900;stroke-opacity:1"\n');
fprintf(fid,'\t\t\tid="squa"\n');
fprintf(fid,'\t\t/>	\n');
fprintf(fid,'\t</defs>\n');
fprintf(fid,'\t<g transform="translate(%d %d) rotate(180) " >\n',...
                round(co*max_x),round(co*max_y));
for i = 0:n
    fprintf(fid,'\t\t<g style="fill:#%s;" >\n',...
                generate_color_hexadecimal(ColorM(i+1,:)));            
    Offset = 2^i-1;
    for j = 1:2^i
        k = j + Offset;
        fprintf(fid,['\t\t\t<use xlink:href="#squa" ',...
                     'transform="translate(%+010.5f %+010.5f)'...
                     ' rotate(%+010.5f) scale(%8.6f)" />\n'],...
                    co*M(k,1),co*M(k,2),M(k,3)*180/pi,M(k,4));   
    end
    fprintf(fid,'\t\t</g>\n');
end
fprintf(fid,'\t</g>\n');
fprintf(fid,'</svg>\n');
fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = mat_rot(x)
c = cos(x);
s = sin(x);
M=[c -s; s c];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function H = Pythagor_tree_plot(D,ColorM)
if numel(ColorM) == 1
    ColorM = flipud(summer(ColorM+1));
end
H = figure('color','w');
hold on
axis equal
axis off
for i=1:size(D,1)
    cx    = D(i,1);
    cy    = D(i,2);
    theta = D(i,3);
    si    = D(i,4);    
    M     = mat_rot(theta);
    x     = si*[0 1 1 0 0];
    y     = si*[0 0 1 1 0];
    pts   = M*[x;y];
    fill(cx+pts(1,:),cy+pts(2,:),ColorM(D(i,5)+1,:));
    % plot(cx+pts(1,1:2),cy+pts(2,1:2),'r');
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Scolor = generate_color_hexadecimal(color)
Scolor = '000000';
for i=1:3
    c = dec2hex(round(255*color(i)));
    if numel(c)==1
        Scolor(2*(i-1)+1) = c;
    else
        Scolor(2*(i-1)+(1:2)) = c;
    end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function  res = iscolormap(cmap)
% This function returns true if 'cmap' is a valid colormap
LCmap = {...
    'autumn'
    'bone'
    'colorcube'
    'cool'
    'copper'
    'flag'
    'gray'
    'hot'
    'hsv'
    'jet'
    'lines'
    'pink'
    'prism'
    'spring'
    'summer'
    'white'
    'winter'
};

res = ~isempty(strmatch(cmap,LCmap,'exact'));


 
W3C-validity not checked.

Licence

Já, držitel autorských práv k tomuto dílu, ho tímto zveřejňuji za podmínek následujících licencí:
GNU head Tento dokument smí být kopírován, šířen nebo upravován podle podmínek Svobodné licence GNU pro dokumenty verze 1.2 nebo libovolné vyšší verze publikované nadací Free Software Foundation. Dokument nemá neměnné části ani texty na předním či zadním přebalu. Kopie textu licence je k dispozici v oddíle nazvaném GNU Free Documentation License.
w:cs:Creative Commons
uveďte autora zachovejte licenci
Tento soubor podléhá licenci Creative Commons Uveďte autora-Zachovejte licenci 3.0 Unported, 2.5 Generic, 2.0 Generic a 1.0 Generic.
Dílo smíte:
  • šířit – kopírovat, distribuovat a sdělovat veřejnosti
  • upravovat – pozměňovat, doplňovat, využívat celé nebo částečně v jiných dílech
Za těchto podmínek:
  • uveďte autora – Máte povinnost uvést autorství, poskytnout odkaz na licenci a uvést, pokud jste provedli změny. Toho můžete docílit jakýmkoli rozumným způsobem, avšak ne způsobem naznačujícím, že by poskytovatel licence schvaloval nebo podporoval vás nebo vaše užití díla.
  • zachovejte licenci – Pokud tento materiál jakkoliv upravíte, přepracujete nebo použijete ve svém díle, musíte své příspěvky šířit pod stejnou nebo slučitelnou licencí jako originál.
Můžete si zvolit libovolnou z těchto licencí.

Popisky

Přidejte jednořádkové vysvětlení, co tento soubor představuje

Položky vyobrazené v tomto souboru

zobrazuje

Historie souboru

Kliknutím na datum a čas se zobrazí tehdejší verze souboru.

Datum a časNáhledRozměryUživatelKomentář
současná1. 3. 2010, 00:12Náhled verze z 1. 3. 2010, 00:12618 × 420 (1,7 MB)Gjacquenot{{Information |Description={{en|1=Pythagoras tree}} {{fr|1=Arbre de Pythagore}} |Source={{own}} |Author=Gjacquenot |Date=2010-03-01 |Permission= |other_versions= }} Category:Pythagoras trees

Tento soubor používá následující stránka:

Globální využití souboru

Metadata