Dostředivé zrychlení
Při křivočarém pohybu je výhodné rozložit zrychlení do směru pohybu, tzn. do směru tečny k trajektorii, a do směru kolmého k pohybu, tzn. do směru normály k trajektorii. Hovoříme pak o tečném zrychlení a normálovém (také dostředivém) zrychlení.
Směr kolmý k trajektorii je dán normálou trajektorie a složka zrychlení, která má stejný směr jako tato normála, se označuje jako normálové zrychlení (hovoří se také o normálové složce zrychlení) . Normálové zrychlení směřuje do středu křivosti trajektorie, a proto se často nazývá dostředivým zrychlením a značí .
Vektor a velikost normálového zrychlení
[editovat | editovat zdroj]Pro velikost normálového zrychlení platí vztah
- ,
kde je změna velikosti rychlosti ve směru normály k trajektorii pohybu, je okamžitá rychlost a je poloměr křivosti v daném bodě trajektorie.
Velikost dostředivého zrychlení závisí na rychlosti (obvodové nebo úhlové) a na poloměru zakřivení trajektorie (u pohybu po kružnici na poloměru kružnice). Směr dostředivého zrychlení je do středu zakřivení (do středu kružnice) a je kolmý k vektoru rychlosti.
Dostředivé zrychlení při rovnoměrném pohybu po kružnici
[editovat | editovat zdroj]Při rovnoměrném pohybu po kružnici je poloměr křivosti roven poloměru kružnice . Použijeme-li navíc vztah mezi obvodovou a úhlovou rychlostí, pak pro velikost dostředivého zrychlení získáme vztah
- ,
kde v je velikost obvodové rychlosti, ω úhlová rychlost, r je poloměr kružnice.
Odvození
[editovat | editovat zdroj]Vzorec vyplývá z podobnosti rovnoramenných trojúhelníků se stejným vrcholovým úhlem, přičemž trajektorii aproximujeme přeponou AB, neboť ta se k trajektorii limitně blíží.
Obě strany rovnice vydělíme a interpretujeme vzniklé derivace (diferenciály) jako zrychlení a rychlost.